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ARSTRACT

This study treats thce ducted propeller with finite
blade number at zero angle of attack in a uniform, incom-
pressible, inviscid flow. The approximations of a lightly
loaded propeller and of thin airfoil theory are made. In
the absence of thickness efiects, appropriate vortex dis-
tributions represent the blades, the shroud and their res-
pective shed vortices. By means of Fourier analysis of the
velocity field in propeller fixed coordinates, the problem
for an arbitruary, radial blade circulation distribution is
reduced to a form similar to the ring wing integral equations
of J. Weissinger. The kernels are not the same for the two
cases cxcept for the zeroth harmonic. The equation for
this harmonic, which corresponds to a generalized actuator
disk formulation, is identical to that of an equivalent,
axisymmetric ring wing. The effect of blade number, blade
circulation profile and strength, propeller advance ratio
and tip clearance, and location of the propeller pluane are
found and may be evaluated over a range of parameters from

tables provided. A numerical example is given.
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HOMENCLATURE

Ah' .o amplitudes of sine term of Fourier harmonic

l.. coe anplitudes of zusine term of Fourier harmonic

Cat *°° amplitudes of complex Fourier harmonic

D distance between vortex element and field
point

rv_. e functions of complex kernel of intermediate
form of governing equations

Gn(QQ) Riegels function

Ih'xp'ld vector influence functions for axial, radial
and circumferential vortex elements respectively

IA' P integ:ialis of chordwise vortex distribution
and decoupled kernel

&

imaginary part of complex function
propeller advance ratio, U/QRp

kernel of final governing equations

’ONFQ

blade number
“fercing function® of higher propeller
harmcaice
Qn_k(a) Legendre function of second kind and half order
R radius of the shroud camber surfacea in the
propeller plane used as reference length
R real part of complex function
Rp propeller semi-diameter
5, (°n+1/2+on-3/2)
s (Qn+1/2'on—3/2)
U uniform f{ree stream




gmN.th

i'i'-}i

L4

shroud chord

functions dependent on higher harmonics of
shed vorticity

unit vectors in the Cartesian system (x,y,2)
unit vectors in the cylindrical system (x,r,6)
V-1

dummy summation index

blade index number

rank of Fourier harmonic

ovrder of Legendre function

static pressure

fluid velocity

time variable

cylindrical coordinates fi. ed in propeller

cylindrical coordinates of , .int con shroud
surface

Cartesian coordinates fixed in tt propeller

Cartesian coordinates of point on sinrcud
surface

nondimensional coordinates with respec: to

R;: e.g., X = x/R

nondimensional coordinatcs with respect to
R_: e.qg. X = x/RP

p
bound vortex shioud distribution
Kronecker delta
shroud camber

effective shroud camber

vi
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shroud chord to dismeter ratio, c/2R
propeller tip to shroud radius ratio, RP/R
constant fluid density

nl/M

duswyy time variable

Qv

Ut/R

azgument of Legendre function

denotes total differentiation of a function
with respect to its argunent

bound blade circulation
P/RPU
maximum of r

nondixensional ¥Fourier coefficients of blade
circulation

actuator disk limit of total maximum circulation

difference between element and field variable;

e.g., 4&x = (x-xv)
dummsy angular variable of integration

characteristic functions giving effective shxroud

caxber

constant angular velocity of propeller
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THREE~DIMENSIONAL THEORY
or
DUCTED PROPELLERS

NTROD ON

Since the concepcion of the ducted prape’ler or Kort

nozzle in the early 1930'31'2

, considerable interest has
been arocused in this configuration, particularly for VTOL
applications in recent years. Despite its promise, however,
itz inherent “parametric” complexity has precluded the
achievement of comprehensive theoretical and experimental
developments. Consequently, the design of an optimum ducted
propellexr has been impousible.

Previous theories have been reviewed by A. Sacks and

\n

J. Burn0113, L. Meyerhoff and A. Finkclltcinu, and J. Megrue-.
There are four main categories: (i) momentum methods, (ii)
singularity distribution methods, (iii) "boundary value" or
streamline methods, and ,.v) combinations of, or approxima-
tions to, These methods. 1In general, though, the bas!c effects
associated with a propeller of finite blade number are removed
by its representation as a disk supporting a unifor: pressure
J“.1,6,7'.8.

The objective of the present investigation is to derive
a three-dimensional theory without the disk approximation.
The simplest ducted propeller situation is choson which retains
most of the principal parameterzx and yet remains amenable to

mathematical solution.




This case corresponds to the ducted propeller with discrete
blading at zero angle of attack in a uniform, unbounded stream
of inviscid, incompressible fluid. The shroud, blade and hub
thickrnesses are assumed to be zero and the shroud camber as
well as the ratio of the blade chord to the shroud chord are
considered small.

The appropriate theoretical model consists of a cylindri-
cal surface o distributed vortices positioned with its axis
c2incident to a unifnrmly translating and rotating sctream.

The blades are introduced as individual, radial vortex lines
of varying circulation with accompanying helical vortex sheets.
The blade circulation distribution is specified arbitrarily.

Formulation of the problem follows the general procedure
of thin 1ifting surface theory. The inherent periodicity of
the shroud loading and the harmonic nature of the vropeller
field reduces the governing equations to decoupled, single
integral form. Either direct! or by modifications, solutions
are expressible in terms of the results of (. Weissingerg.
Certain self-sustaining shroud load distributions appear
which seem analogous to the recent instability results of
H. Ludwieglo.

It is hoped that this solution will provide not only abso-
lute information for design, optimization and experimental
test programming, but may justify extended effort for the

more difficult cases of angle-of-attack and static thrust.




CHAPTER ONE
BASIC FORMULATION

1.1 Physical Problem and General Background
The problem which we have chosen to study is a ducted

propeller in steady forward flight at zero incidence in an
incompressible fluid otherwise at rest. The forward velo-
city will be assumed sufficiently large and the shroud camber
and klade loading low encugh that the theory of linearized
perturbations may be .sri. For this investigation the
Reynolds number will be taken lzrge enough to confine vis-
ceas effects to the boundary layer. This will be reasonably
valid except in the neighborhood of the propeller tip if it
penetrates the shroud boundary layer.

With respect to the geometry of the ducted propeller
configuration, any thickness effects due to the hub, pro-
peller blade or shroud will be postponed to subsequent
investigations. However, the effective camber which they
produce can raadily be incorporated within the framework of
the present analysis.

Because of the viscous skin drag associated with long
shrouds, sanrouds of moderate chord t- diameter ratioc are of
principal interest. Fortunately, this is consistent with
the usual thin airfoil approximations of satisfying the
boundary conditions on the chordline by a »ound vortex dis-

tribution on the chordline. riichemann and Weber have sug-




gested a value of two as an upper limit to this ratio for
finite length effects in their work on annular airfoilsé.

On the other hand, the ratio of the shroud chord to
the blade chord is expected to be fairly large. That is,
for conventional propeller blades, the aspect ratio is quite
large and the shroud should be approximately of the same
diameter as the propellex. Therefore in order to gain as
much thrust improvement as possible by preventing slipstream
contraction, the shroud has to be lengthened. Since this
increases the viscous shear drag, an optimum configuration
can exist. Sufficient for the moment, it is reasorable to
take the shroud length much greater than the blade chord as
stated.

In ordinary thin airfoil theory, we have two classes
of problems: (i) the direct one in which the pressure or
velocity on the atirfoil is given and the airfoil geometry
ie to be determined; and (ii) the inverse problem in which
the airfoil geometry is given and the pressure or velocity
on tha airfoil is to be determined. For the case we are
examining here, we have two bodies, the shroud and the pro-
peller, and hence we have four pc3sibilities of combining
the above appropriately. In other words, we have either
(1) the direct-direct: (1ii) the direct-inverse; {(i:1) the
inverse-direct: or {iv) the inverse-inverse, where the first
word refers to the shroud and the second, the propeller. In

consideration of engineering applications, comparison with




experimental measurements, configuration optimization and
pcssible boundary layer studies, the inverse-direct problem
has been selected. Nevertheless, thrcughout much of the
analysis, it is immaterial as to which case is considered.

The shroud geometry will be assumed as well as the blade
circulation. We are not directly concerned with the chordwise
loading of the blade or the determination of its geometry
since we can replace it with a radial vortex spike by virtue
of our shroud-blade-chord ratio assumption. The problem, then,
will be to obtain the shroud pressure distribution.

To formulate the problem, appropriate singular solutions
of Euler's equations will be distributed to represent the
shroud, blades and their shed vortices. 1In general the
strengths of these dis:ributions will be determined from the
requirement that the component of the total velocity normal
to the shroud surface be zero and that the Kutta-Joukowski

condition be satisfied along the shroud trailing edge.

Coordinate System

In a space-fixed coordinate system, the flow is unsteady
due to both the motion of the duct and the propeller. The
duct has the uniform translation U and the propeller, the
constant rotaticn 0 as well as the translation U , see
Fig. 1.1, Because of this rotation, the motion is also
unsteady in a uniformly translating system fixed in the duct.

However, consider a uniformly translating and rotating systen







fixed to the propeller, say the Cartesian coordinates (x,y.z)
or the equivalent cylindrical coordinates (x,r,6) . Increas-
ing @ is chosen in accordance with the righthand rule for
positive advance along the positive x-axis and is measured
from the positive y-axis.

In this system, Fig. 1.2, we see that the incoming "“free
stream” has an axial component of magnitude U in the posi-
tive x-direction and a tangential component 0r in the posi-
tive or increasing 6-direction. Now, the blades are at rest
with respect to the propeller coordinates, but the duct is
rotating with angular speed (} about the propeller axis as
shown. Since the duct is axisymsmetrical about its axis of
rotation and only the normal component of the velocity is
required to vanish, the rotational motion of the duct does
not affect the potential solution. In other words this
mction is arbitrary and can be set equal to zero in the pro-
peller-fixed coordinates. This mathematically equivalent
mode]l thHen corresponds to the physical case in whiéh the
shroud is rotating along with the propeller, see Pig. 1.3.

A simple case might illustrate this mathematical
equivalence. cConsider a two-dimensional thin .airfoil in a
uniform, inviscid stream. Then, suppose an infinitesimally
thin belt is stretched arocund the airfoil and set into motion.
For the resultant flow, the normal boundary and Xutta con-~
ditions are unaltered by this motion and so the solrtion is

the same as before. In a re2l fluid, of course, the boundary




1.3

layer would be changed and hence also the potential flow,
proportional to the modification of the effective airfoil
shape. This correction is of higher order, however, and so,
consistent with the usual thin airfoil approximations, the
two are equivalent.

1f the axis of the duct were inclined at an angle of
attack ¢ with respsct to the translational motion, no
equivalent steady f£flow would exist. That i, in this case
there are time dependent incoming velocity components. With
the stream U coincident with the xz-plane at time t = O ,
we have for the free steam velocity 9y in propeller-fixed

coordinates,

gy =Ucosay+ & ig
+U [ sin (6-0t) L+
cos (6-0t) iy ] sin a (1.1)

Setting a = O , we see Eq. (1.1) reduces to the steady com-

ponents U and {r we have already noted.

The Mathematical Mocel

With these considerations we can proceed to a de-
tailed examination of the model. Fig. 1.4 gives the

geometrical properties of the configuration. 1The plane
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determined by the leading edge of the duct is perpendicular
to the x-axis at x = -c/2 and the trailing edge, at
x = +t¢/2 . The propeller disk of radius Rp is normal to

th

the x-axis at x = x_ with the N of the N blades

P

lying in the xy-plane. The slope of the shroud with respect
to the x-axis in any xr-plane is designated by tan e(x) ,
which is taken positive for increasing shroud radius with
increasing x . A reference shroud radius is R , For
convenience with respect to tip clearance, R is taken as
the radius of the shroud camber surface in the propeller plane.

In accordance with our assumptions, we can now repre-
sent the configuration by a distribution of bound and shed
vortices. First, the propeller model follows classical
theory. The circulation dis:tribution of the bound radial
vortex spikes replacing the blades is designated by P(rv) ,
the subscript v being generally used tn designate the
location of a vortex element. Each blade, by symmetry, has
identical loading and is accompanied by its shed semi-infinite
helical vortex sheet of strength dl‘/drv per unit radial
length. The helical shape is assumed to be determined by
the incoming stream components at r, - its point of shedding.
For the shroud we have a form of a 1ifting surface. The bound
vortex distribution per unit length is “y(x .6, : rs) where
re = rs(xs) denotes the radius of the shroud camber surface.

Because of 7Y's angular dependence generated by the finite

blade number, each vortex ring has a trailing vortcx cylinder
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made up of an infinite number of semi-infinite helical vor-
tices of strength (by/BGV)(rsde) . The positive senses of
these vortices will be defined later.

For a given propeller loading, we can now formulate an
equation to determine <y . Let ¢ be the total velocity

vector given by

9= % +9r +9r'*q, * 3, (1.2)

vhere ) has been defined previously and qr is the velo-~
city induced by the N bound blade vortices:; Qp- by the
shed blade vortex sheets: <_17 . by the shroud hound vortices;
and 37', by the shed shroud vortices. With q - i and

q - ir as the axial and radial components of q respectively.

then for the flow to be everywhere tangent to the shroud, we

require from Fig. 1.4,

qlxg.r5.6,) -
Si(xs'rs‘es) )

tan e(xs) = %f (1.3)
where :s(xs) has been defined. Eq. (1.2) is exact within
our model limitations. If we assume ¢ < 7/2 , tan € = €+0(¢
thus for a moderately iovaded prupelleror O{'/R U) << i .

q - 4 = 0(U) and hence from Eq. (1.3), g - i = o(y) = o(ue)
This leads to the linearization of the RHS of Eq. (1.3). Expan

ing 9-2 and g - i as
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s'rs'es) ) i-r = g(xs,R,Os) ) ir

s
rs=R
g(xs,rs,Gs) < i= q(xs,R,Gs) . i
og - i
L P (rs-R) + .. (1.4)
s

and noting that (r,-R) = O(ce) , we have to retain only the
first terms from consideration of the previous orders. 1In
addition, from Eq. (1.2) with a =C for g, of Eq. (1.1),
the axial component can be replaced by U and Eq. (1.3)

reduces to a familiar thin airfoil type approximation,

e(x,) = = (1.5)

That is, we have only to satisfy a perturbation boundary con-
dition on a mean shroud or reference surface. Since the radial
ccrponent of the free stream is zcro for zero angle of attack,
Eq. (1.1), we have only to calculate the induced radial com-
ponents. The bound and shed shroud vortices as formulated are
located by r_ . But consistent with the orders we have

retained, an expansion as carried out for gq - 1 and q - x,
shows that use of the mean radius R is sgufficient. 1In sub-
sequent discussions, gw and 9, will be so considered

without further notation.
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Eq. (1.5), together with a Kutta condition at the trail-
ing edge of the shroud, is the tasic equation for the deter-
nmination of the shroud vorticity and hence the loading. The
propelier inflow could alsc be calculated and nhence the

required blade geometry for the selected bhlade loading.

Velocity Influence Functions

In order to express the radially induced flow, or wash,
of Eq. (1.5) as well as the inflow components, it is conveni-
ent to introduce three elementary velocity fields. These
fields, or influence functions, Ih';p'ld are due to vortices
of unit strength and unit length which lie in the axial, radial
and circumferential directions respectively as shown in Fig. 1.5

In general, then, we have from the Biot-Savart law for
the velocity induced by an infinitesimal vortex in an incom-
presgible fluid,

1 X

. eee = —_— (1.6)
n B g

L)
o

where I is a unit vector in the positive direction of our
desired element and D is the vector from the element at
(xv,rv,ev) to the field point (x,r,8) ,

D= (x-x )1+ (y-y,) j+ (z-2,) k (1.7)
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FIGURE 1.5

BASIC VORTEX ELEMENTS TO DESCRIBE THE FLOW FIELD
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with the relatior.

y = ¥ cos 6

r sin 6

N
4

between the cylindrical and Cartesian coordinate systems,

15

(1.8)

The

unit vectors 4,j and k are directed along the x.y and z-axes

respectively.
From Fig. 1.5 we have for the axial element, or In

simply

where positive circulation is chosen in accord :nce with a

.

(1.9)

righthand screw advancing in the positive x-direction. For

the radial element, or lp . again using the righthand rule,

we have

I = cos Gv J+s8in b k
with positive circulation corresponding to advance in the
positive radial direction. Finally, for the circumferent

element, or ;d .

I=-8in6, j+cos b k

(1.10)

ial

(1.11)
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for positive circulation in the increasing O-direction. Thus
sign convention on the shroud will turn out opposite to that

usually employed in wing theory.

Calculation of the Induced Velocities

From lp and I3 the velocity fields for roth the
propeller and shroud vortices may he simply expressed,
and from I and Iy . the f£ields of the shed helical
vortices.

For qp . we integrate over each blade and sum the

results over all blades. Or, from Fig. 1.4, we have

N
9 = le‘jxp P(xv) Ip(xp,rv.Ewt/N) dr, (1.12)
=1 ¢

where Eqs. (1.6) through (1.8) together with Eq. (1.1C) give
LP and the argument of ip locates a vortex eliment, the
field point remaining unspecified for the moment. The index

£ denotes the blade number, the Nth

blade being chosen
arbitrarily to coincide with tlie y-axis.
Likewise for the shroud, we have by integration over 7y

placed on the reference cylinder ol radius R ,
c/2

n
3, =L/2 Lr v(x,.6,) Ly(x,.R.0,)R 6 dx, (1.13)

1, is given by Eqs. (1.6) through (1.8) and Eq. (1.11).
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To express Gr- and SW" we require the velocity
indvced by a semi-infinite helical vortex of unit strength,
with its axis coincident with the x-axis. As assumed, the
shape is determined by the free stream. That is, the coor-
dinates of any point on the helix which originates at
(xv.rv,ev) are given by (xv+Ur,rv,9v+Qf) . Here T is
the conventional variable representing the time for a vortex
element, convected by the free stream to travel from the point
of shedding to that point. Subsequently, then, we recognize
that the helical filament can bhe represented by an infinite
series of component elements parallel and concentric to the
x-axis. Integrating over these component elements of length
Udt and rvﬂdt respectively. we obtain the desired velocity
field. This can be compared with the results of other pro-

pellexr investigations, see T. Moriyall

, for example.

From Helmholtz's theurem, the strangth per unit length
of the vortices shed from the propeller is -I'°. The prime
denotes differentiation with respect to the argument and the
adopted sign convention introduces the minus sign. Carrying

the integration and summation over the propeller, we have

N R, ©
3-1"=Z f —I"(rv)f (1:,'.‘U+_I_d er) dtdr
=1 © 0

where

I ¥ L (x #UT, ), 2mL/5 0v)
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I3 = ;d(xp+ur,rv.2nl/n+nr) (1.14)

1, is given by Egs. (1.6)-(1.8) and Eq. (L.9), and I, was
given for 37 . The integration over the dummy time parameter
T 1is identified as the velocity field of the semi-infinite
helix of unit strength.

Finally, we can derive gy' for the shroud, where the
strength per unit length of the shed vortices is -by/Bev .

Integrating over the reference surface of radius R as for

U+I4RQ) dt de dx,

A‘H

&y'a[c,g f,,ﬂ A

L, = ;h(xv+UT,R,GV+QT)
14 ;d(xv+UT'R'9v+QT) (1.15)

and lh and Iy were previously noted.

Superposition of the velocity fields expressed by
Egs. (1.12), (1.13), (1.14) and (1.15) determine, within the
limits of our approximation., the total induced velocity at any
field point.
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1.6 Formulation of Basic Equation for
With the total induced velocity field we can complete

the explicit formulation of Eq. (1.5) for the shroud vortex
distribution 7y . 1In particular, we need only the radial
components of the velocity evaluated on the reference surface.
To determine these components, we first carry out the
required scalar triple products ir « I XD . The radial unit
vector i  is given by Eq. (1.10) with Gv replaced by 6 ;
1, by Egs. (1.9), (1.1C) and (1.11); and D , by Egs. (1.7)

and (1.8). With x = Xg . T =R and e = es , we have

i - L XD=-r sin (es-ev) (1.16)
iy - L, XD = - (x,-x,) sin (6,-6) (1.17)
i, I3 X D= (x,~x ) cos (6,-6 ) (1.18)

The other quantity we need is the magnitude of the vectcor D
from any element to the field point given by

2 2 2

2 _ - .
D = AxS + R° + r; - 2Rr -cos 86 (1.19)

v
for field points on the shroud where Ax = (xs-wv) ausd
AGV = (es-ev) .

The radial shroud velocity components now fellow from

Egs. (1.12), (1.13), (1.14} and (1.15). FPror the propeller




contributions, the bound vortices give,

Ax Rp -3
9 - i, = - E—,—? sin Aezf I(r,) D ar,, (1.20)
£=1 0

where AxpE (xs—xp) » 06y = (6,-2m2/¥) and D is given by

Eq. (1.19) with x, replaced by x5 and ev ., by 2ni/N .

For the shed vortices,

Rp o
f rvr‘f{u sin AGh
0 V]

_ -3
QAxpT cos AGZT] D d-rdrv

)
1 O
gr,'._j.__rzE:;L
k=1

(L.21)

with AxpT (xs—xp—Ur) » 08, = (6,-2mL/N-Q7) : and x,
replaced by (xp+U1') and Gv by (2wL/N+Qt) in

D . For
the bound shroud vortices, we have
c/2 W
R -3
. i = f ax I'y D ° cns A8 d6_ax (L.22)
Sy 2 " Im Leso Vg v vy
with r = replaced by R in Eq. (1.19); and
c/2 m
q’y, . 1 =Eg_;r-J f ?—6 f{U sin AeVT
- T ~-c/2 V-7 v Y0

- -3 '
QAXVT cos Aev'r} p “ dr devclxv {(1.23)
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for che shed shroud vortices with &x . = (x,-x -Ut) ,
Aevr E (GS—GV—QT) ; and x, replaced by (xv+Ur) . ¥, by R
and 9v by (9v+QT) in Eq. (1.19).

If Eqs. (1.20), (1.21), (1.22) and (1.23) together with
Eqg. (1.19) are substituted into Eqs. (1.2) and (1.5), the
basic equatior: for the shroud verticity is determined in terms
of a surface or double integral relation. As such it has the
general form familiar to lifting surface theory. That is, for
a specified propeller loadirg, the propeller terms may be
grouped with the shroud camber term forming an effective camber.
The shroud bound and shed vortices are then required to produce
a flow tangent everywhere to this fictitious surface, as well
as to satisfy a Kutta-Joukowski condition at the trailing edge.

Not only does this equation have this general form, but it
mzy be compared in detail with the ring wing surface theory of
J. Weissingerg‘le. In fact if ) is set equal to zero and the
T 1integration carried out, the form is identical with that of
2 medified ring wing having non-axisymmetric cambes.

On the other hand, if the blade loading is not given, then
a second equation must be written. In view of our approxima-
tion, a "lifting"” line nodel would be appropriate. This equa-
tion would be coupled with Eq. (1.5) by the change in the

effective local angle of attack of each blade element pro-

duced by the total inflow.
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CHAPTER TWO
DERIVATION OF GOVERNING EQUATIONS

Periodic Expansion of Shroud vortex Distribution

In general the inversion of a lifting surface type equa-
tion is exceedingly complex. However, in the present case as
well as for a ring wing, the closing of the shroud surface
introduces a natural periodicity which yields an essential
simplification.

In particular the str-agth of the bound shroud vortices
may be expanded in a complex Fc¢ "iter series to permit inte~

gration over the Gv variable, o

o
v(x.8) = U Z e (x) '™ (2.1)
=~
The speed U is inserted for conver .ence to non-dim=2nsion-
alize certain subsequent expression:c. Only mN components
are used as indicated by the period.city in 2n/N of the
propeller velocities of Eq. (1.20) and (i.21) for the equal
blade loading of the present case. Since <y is real, we
require that the complex coefficients for positive (+m)

and negative (-m) integers be conplex conjugates, or

2c m Bm + 1 Am
2C+m - Bm -2 Am (2.2)
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a3

where Am and Bm are the real coefficients of the sine and

cosine terms respectively of a trigonometric Fourier series over

positive m for vy .

For m = 0 , we note AO = C and 2CO = Bo ; i.e.,
UBO/2 is the zeroth Fourier component of the shroud vorti-
city in the propeller-fixed coordinates, or equivalently, the
time-independent part in the shroud-fixed coordinates. As
such its physical role will be shown to determine the time

average difference in shroud inner and outer static pressures.

Reduction of Shroud Contributions

Before substitution of Eg. (2.1) into Egs. (1.22) and
(1.23) for the shroud contributions to the radial velocities,

we introduce the radius R as a reference length, or

X Z%/R, ... (2.3)

This will limit the explicit occurrence of the shroud chord

to diamete:r ratio defined as
A =S (2.4)

to the limits of integration over the coefficients A, and
B, . We also change our variable of integration from ev t.o
ABV/Q - Since the integrand is periodic in 6, we adjust

the new limits of integraticn from -n/2 to n/2 . 1In add.-
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tion, the separation distance D is simplified by means of
the cosine double angle formula.

Now using Eq. {2.1) in terms of the new quantities in
Eq. (1.22), the order of integrations and summation may be
interchanged because Cm has at worst a square root singu-
larity at the shroud leading edge. We can then split out

the 98 dependence from the integrations to obtain,

+A
2]
g, " i = UZ o 1O f Cn(x,) F‘ym(Axv)dxv (2.5)
n=-w -2
where,
= ex__ f -2JJTIN8 COS 20 (2 6)
m R Y (Ax ' b sin? 8)372

In other words, Eq. (2.5) represcnts the Fourier expansion

of radial velocity induced on the shroud by the bcund shroud
vortices. The coefficients of this expansion are siwm,ly the
integrals of the cocfficients of the shroud vortices operated
on by the functions of Eq. (2.5).

These functions may be simplified and expressed in terms
oZ known functions. The sine term of the exponential is odd
and cos 26 and sin2 9 , even, so that the imaginary part
of F is zero. For the real part we first note the trig-

ym
onometric identity
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2 cos 2mN® , cos 26 =
cos 2(nmN+1)6 + cos 2(mN-1)86 (2.7)

and then use the trigonometric integral form of the Legendre

function of the second kind and half order Qn-% ., developed

under this proqraml3,

n/e

-~

o, (&) = cos 2né a8 2.8
n'%(w) ‘[n/2 (2(w-1) + 4 sin® 8};i ( )

by differentiation with respect to the parameter & . cCom-

paring the resulting forms, we have
ox,
Fym =~ TOm SmN(ml)

(1 + ax 2/2) (2.9)

et
o)
]

where S . = (“mN+l/2 + QmN-3/2) and the prime denotes
total differentiation.

Alternatively, Fyn may be expressed in complete ellip-

tic integrals or Riegels' functionsl3. For the hicgher
harmonics, the Legendre functicns are more convenjent. For
any order they have the same logarithmic singularity at an
argument of unity and decrease monotonically to zero for

increasing argument, see Fig. 2.1. At any argument, they

decrease monotonically with order. NBS tableslu, as well

15

as extended tables prepared under this study are available.
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To derive an equation for the vortices shed from the
shroud in a form like Eq. (2.5), we can proceed along similar
iines. The only essential complication appears in the addi-

jonal integration over the dummy time variakle T . There-
fore, we interchange the order of integration of T and ev
and then use AGVT/? as the variable of integration instead
of Gv . This gives a corresponding F a in terms of an

Y
integration over the Legendre functions. That is, we find

A

imNG - - -

g, - i = UZ e m'sf Culx,) ?,ylm(Axv) dx,, (2.10)
= - -\

where nym is given by a Fourier integral over the dimen-

sionless dummy time variable T = (Tt , or

imN -1mNT s &=
N Le (AxvrsmN(wQ)

]
i

-1au T, o (@,) } ar

- - - 2
w, = 1+ &x,, /2 (2.11)

and T, = (an+1/2 - Qm8—3/2) . The product of the propeller
advance ratio J and the propeller tip clearance parameter

. defined by
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= U/QRP (2.12)

'
[

=R /R (2.13)

represent the "shroud advance ratio" U/OQR . The factor
imN results from the differentiation of the shroud vor-
ticity. This differentiation which is carried out term-

wise 18 justified on a physical basis.

Decomposition of Governing Equation for v

The .ntroduction of the expansion of Eg. (2.1) for vy
has permitted the explicit integration over ev . 1f we now
express the propeller contributions in temms of their Fourier
components, we can decompose the single equation for the
vor.ex distribution over the shroud surface into an infinite
set of uncoupled equations integrated along the chord.

Let Ucrm(is) ard Ucrrm(is) be the complex Fourier

coefficients of the radial velocity induced on the shroud by

the bound and shed propeller vortices, or

[+ ]
1mNOg !
a .4 =0 z; Crm € (2.14)
“r o
oo
6
Grr - ap = U ) Cpo e (2.15)
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To find these coefficients we have, from orthogonality, the

relations

. _ a1 [T ., _~imNg (2.16)

‘rm " %m0 J, I " A S a4

Cp s - l ‘/‘T! .. i e-imNQS d (,) 1'{)
r m 27[[] - Sr' bar o 63 “e

for a period of 2n . Since 9 ;T and dr- - ér are real
quantities, the values cf these coefficients corresponding to
+4m &ond -m , must e complex conjugates.

First, substituting Eq. (1.2C) in%o Eq. (2.16), we trans-
form to the non-dimensional quan.ities previously used and
interchange the order of the ;v - and §g ~ integrations.
Sir~e the 6y Jependence is periodic over the range of inte-
gration, we adjust the limits to (-m 4 2mi/N) € 653 & (n + 218,
and integrate on 9 ¥ A9;/2 for -m/2 6 ¢ w/2 . The depend-
ence over the blade summation index £ , then, disappears from
this integral since it occurs only in the exponential power,
~2mmiy , which is equal to one for any integer m{ . That is,
for N idencical blades, each blade contributes equaliys to
any harmonic. The integral on 8 itself, after removing a

= 3/2 33
v

factor of r , is evaluated in terms ~f the

from
Legendre functions Qn—% by means of an equation analogous

o Eg. {2.7) for th~ sine function, as well as Eq. (2.3).
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The £inal result is,

mﬂf\_XB v r . e -
rm = T2 L[) 377 Tan(®3)9T,
v
Ey =1+ A§p2 + (1-%,)2 )/2E, (2.18)

The non-dimensional blade circulation ©' iz defined by,
M= I‘/apu (2.19)

instead of U, QRP could be used, but the translational
% a4 is better for primary emphasis on the shroud.

If we substitute Eq. (1.Z1) into Eq. (2.17), w2 can pro-
ceed in the same way. The complication of the integration over
the dummy time variable T can be handled by an integration
interchange corresponding to the analysis for the vortices shed

from the shroud. Carrying this out, we find that

“‘ = yp- fal g -
_ N r(r.) -imNT = .y~
Cps_ = ) e { ax__ s’ (@)
I''m 811'2 0 ;_.-g—' ‘/O pt - mN‘4
‘v

- iJu T;m(au) } ar dfv

By =1+ [ &K P+ (1-E,)° 1/2F, (2.20)

which ig a Fourier integral.
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In a broader sense, Egs. (2.18) and (2.2C) represent the
harmonics of the radial velccity of a free propeller in an
unbounded uniform stream. That is, Xg o R are interpreted
as the coordinates of an arkitrary field point. S. Tsakonas
and J. Breslin have determined the harmonic componentsl6 of the
pressure field for a free propeller using the same vortex
representation. Their results are expressed in complete
elliptic integrals instead of Legendre functions.

Now, we substitute Egs. (2.5), (2.1C), (2.14), (2.15),
(2.18) and (2.20) into Eg. (1.5) and equate the coefficients
of each harmonic. After transposing the propeller terms, we

obtain

60m e(xs) - CFm(Axp) - cP'm(Ax

p) =

A
L cati) Caa(ai,) « o) laf,) ) 65, (2.21)

where 60m is the Kronecker delta and m extends over all
negative and positive integers. The shroud camber appears
only in the zeroth harmonic since it is axisymmetric bhy
assumption.. In other words, in inviscid flow:

The cffect of axisymmetric shroud camber for a ducted

propeller at zero angle of attack appears only in the steady

shroud load for a fixed blade loading.
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Splitting of Governing Complex Equation

In complex form, Eq. (2.21) constitutes a doubly infinite
set of equations over 1ll m for the coefficients Cm(iv)
which determine the shroud vorticity. Alternatively, we can
separate the real and imaginary terms, producing an infinite
set of coupled pairs of equations in Am and Bm over
m=1,2,3 ...

For simplificatioa, we note from the recursion relation-

ship for the Legendre functions ,

Qs = Qnoy (2.22)
that,

smN = s-mN

Ton © “Tomn (2.23)
From Egs. (2.9) and (2.1l1), then, we have that F7 +m 209
F).-m are complex conjugates and EY,+m and Eyﬂ-m are

complex conjugates. That 1is,

yotm “(Fyp)

Fyom = Q(FW)

Fy am = RE )+ ﬁ(?y,m)

By = R(Fyp) - 13(F ) (2.24)
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In addition, the propellsr Fcurier coefficients for +m and
~-®m are complex conjugates. In fact, if Eqs. (2.23) are used
in Eqs. (2.18) and (2.20), tho equations for Cp . and

CP,- are the same as for F and with the real

n Y.tm Fy,-u
part replaced by tb: imaginary part, and the equations for
Cr’ im and CP',-m are exactly the same.

¥*~* these results and Eqs. (2.2), we can add and sub-

tract .. (2.21) into a set of coupled equations

for Ab and Bm '

2 &, € - QR(CP'm) =

A
fk { Bn&(ym + P,Y 'm) * Ay Q(Fv,m) ] d;'v (2.25)
and,

- 23(cpy) - 23(cpy) =

A
Jf { - AmQ(Fym + Fv'm) + Bm’;(?v'm) ) ax, {2.28)
-2

il

where m = (0,1,2 ... . PFor m~ O , AO Z 0 as noted before
and Bq. (2.25) deterxmines B, -
The intexmediate form of Egs. (2.25) and (2.26) may be

further simplified. Pirst, from the recursiocn relaticn13,
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2N,y = Oy~ Ozsp (2.27)

the sin mNT term of R(C.-;) , corresponding to the elements
convected by the axial flow, may be reduced to QmN-ls . On the
other hand, the term produced by the swirl depends on A;{p_r '
but this is a perfect differential in T ; i.e.,

_d_ ~ - _ ﬂ - ’ ~

37 smu(wll) = Axp,r Sm.N(wb,) (2.28)

Iy

Integrating this contribution to Sl(cr 'm) by parts and not-
ing Qn-% goes to zero at infinity, we get a contribution
independent of T from the lower limit and can add the remain-
ing integral to the reduced axial texrms.

The term 3 (CI‘ 'm) yields to analogous steps while ‘l(cl"m)

requires only Eq. (2.27). If we set 9‘(2(:1"11\) = Bpop -

m
;(QCrm) £ - Ap, and ;(ch'm) = - Apop s we get
i
N J[ =.-% ~
B = r'e?® (s_.{w,)
Iy &% Fy) ) ax, (2.29)
o fu L Q (w,) 4ar (2.30)
Ap_ = - il -5 Q. (®,) dr .
I'm 2"2 0 rv3/2 mN-X%1"3 v
& ﬂlr_""!i[h A% _,t.) ) azf 2.3
Apm = unlg ./0 Ty mN( p'rv) J ary, (2.5:)




The functions SN and th are Fourier integrals given by:

]

® 2
a‘g“) ] - -
ImN mN\/; [ t, QmN—& + Sy | sin mNT dT

- m»{)w[g%pﬁ QmN_!s+SmN]cos mNT AT (2.32)
v

with Q., and S having the argument BA .

mi
Turning to the kernels of Eqs. (2.25) and (2.26), we £ind

that they can be expressed in similar, but simpler, terms. 1In

fact, we can show that one is proportional to the derivative

of the other, or,

)= -3 __d
QB+ Eyop) ny TR, J(Fylm) (2.33)
Therefore, we can define a single kernel, say K = (Jn/mN) -
3(F7'm) , and obtain

K (ax,) = 5 S 0(@) - g (8% ,1) ) (2.34)

vwhere the argument of Q. ., and S, of gmN(Aiv.l) is
@, because r  is unity. 1b%§mﬂ(wl)/un is readily identified
as Q'(Fym) or the contribution of the bound vortices.

Prom Egs. (2.29) through (2.34), the intermediate forms

of Bgs. (2.25) and (2.26) assume the final forms,
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260m € BP rm =
- !~A _ by _
EN ‘ix ApKpdX,, = \[; B, K ax, (2.35)
AFm + Ar'm =
|
\‘ A A
) mN - -
| Em f Bme“b‘v + f %nigndxv (2.36)
- -\
]

where € i3 a function of Xg i APm

' AP'm , and BP'm , of
(xs—xp
m=0, AC £ ¢ and Eq. (2.35) determines By -

) A, and B, of x ; and K , of (xs-xv) . For

"
v

Discugsion of Coupled Equations

Egqs. (2.35) and (2.36) for the bound chordwise di- -
tions of the shroud vorticity contain several important fedi..zes
First, the propeller contributions depend only on the

axial separation of the shroud point and the propeller plane

for a given number of blades, hlade loading and tip clearance.
Since they do not depend on the angular position of the blade,
the effect of finite blade chord couid be incorporated in the
present formulation. That is, the blade could be represented
by a distribution of radial elements with 65 = Oz(i

P
r = P(Ev,ip) . The corresponding propeller Pourier coeffi-

) and

cients would then be integrated over the appropriate range

of xp .
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Second, the coupling of the equations is due to the swirl,
or {1 , of the incoming flow. In other words, from the inter-
mediate forms of Eqs. (2.25) and (2.26), the equations would
be independent only 1if J-(F7fm) were zero. But from Eq. (2.1l
this requires that Q— 0 . To see this, we resubstitute
T = Q1 and use the alternative dimensionless time 7T = Ut/R .
Then the exponential factor becomes one as (Q— 0 and the

swirl terms disappear, giving the real quantity

o
. BN ‘e . -
Q{iyo Fﬁ'm = i \/\ TmN{wa) dr (2.37)
0

where 52 =1 + (Aiv-%)e/Q . The decoupled equations have the
same kernel RQ which has a Cauchy singularity.

Third, various singularities will appear in our governing
equations. In general the propeller contributions will remain
finite since u <1 . For the limiting case of pu -1, a
special study of the anticipated behavior of the bound blade
circulation near the tip is necessary. On the other hand, the
chordwise distributions of the bound shroud vortices and the
kernels will possess infinities. The coefficients Am and Bm
will have square-root singularities at the leading edge of the
shroud since the fluid must usually flow around an edge of
zero radius. Under special conditicns of tangential Flow
entry at the leading cdge, these singularities will disappear.

The kernels will always be singular ac the zero of their argu-
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ment, however. That is, in integrating over the shroud we
must always pass over a contributing element. To determine
the nature of these singularities, we need the logarithmic
behavior of the Legendre functions near unity. From Ref.l3 ,

we have
Qn_,!(a’S) = Lin(w-1) + 0o{®-1) fn(w-1) (2.38)

The integrand of g, .(C,1) . then, has a T fn T behavior
near the lower limit, the only region of concern. Since this

1s bounded, Aiv.l) 18 regular at Aiv = C . But,

I SN ¢
the remaining term in Km , gives two equal lcgarithmic con-
tributions and Eq. (2.34) becomes,

K (A%,) ~ - 2= In|ak | (2.39)

near Aiv ¢ and the integral of Egs. (2.35) and (2.36)
must be interpreted in the Cauchy principal value sense. This
singularity 1s due to the shed vortices which, in the neigh-
borhood of Aiv ~ ( , appear as a semi-infinite sheet of
vortices of constant strength. In contrast, differentiating
Eq. (2.39), we have the usual Cauchy singularity of two-
dimensional airfoil theory. Because ﬂ5§§én(5l)/un 1s the
bound shroud vorticity contrabution, this result i1¢ antici-

pated. 1In fact with neither swirl nor propeller terms,

Egs. (2.55) and (Z.3%) reduce to the zeroth harmonic for B ,
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which repregentz an axisymmetric ring at zero angle of attack
in a uniform stream U . For the limiting case of infinite
duct radius, the regular part of the kernel vanishes, leaving
the singular part as the proper result.

Fourth, after removing the swirl, the decoupled equations
are identified with the general equations for an infinitely
thin ring wing as developed by Heiasingerg. For the pro-
peller and camber terms, this simply requires their reinter-
pretation as the coefficients of a trigonometric expansion for
any specified radial wash that the shroud system must cancel.
For the kernel, though, we need to show that the sum of the
contributions from Egs. (2.9) and (2.37) equals his results.
The Cauchy singularity, as we have seen, coincides with the
singularity of his kernel. This comes from the "bound" term
-Aivséu/un . which is invariant with the swirl and which is
equated to its counterpart simply by the relationl3 between
Qn—% and the Riegels functiont? G, .

0, (@) = - 236, ()4 (2.40)

where ®° = 2/($i+1) . To equate -g/ _(Ax ,1)/47 and ite
counterpart, or the "whed"” terms, is more difficult. One way
is to re-express Tén in the Legendre inteyral form of

Bg. (2.8) and interchange the order of integration. Integra-
tion on T represents a semi~infinite straight vortex and

can be carried out. The remaining intzgration then agrees

with the corresponding Weissinger terms in integral form. Since, in
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he

turn, he expresses these in Riegels functions, the final

identity by means of Eq. (2.40) becomes fcr mN # O ,

w Ai? ( Q;N_%+2Q;N_3/2...+2Q%+Q:% ) (2.41)

a result which is needed later. The arguments on the RHS

are o, .
1

Shroud ané Propeller Loading

After the determination of the shroud vortex distribu-
tions, the total perturbation velocities induced by the ducted
propeller system may be computed at an arbitrary field point.
This permits the calculation of the shroud pressure loadings
as well as the propeller inflow velocities.

The required velocities ar + 9p - 37 and SW' are
given in general by Egs. (1.12), (1.13), (1.14) and (1.15).
Any component of the flow is evaluated by taking the appro-
priate scalar dot product into a unit vector in the desired
component direction. Reduction tc harmonic expreasions in
terms cf the tabulated Legendre functions of second kind and
half order follows the previous derivations.

To find the pressure, we use a linearized form of
Bernoulli's equation. 1In the propeller-fixed coordinates,

the flow 158 steady but rotational. Therefore the total head,
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or static plus dynamic pressure, is constant only along a

atreamline ¥ . That is,
p+rg - a2l -
p, * p(v° + 0°x%)/2 (2.42)

where p is the static pressure and ¢ 1is the fluid density.
By our assumption of small disturbances, the deflection of any
streaxline is negligible in BEq. (2.42), and we may use the
same radius r for p and g as at infinity. Omitting the

higher order velocity terms as before, we have for Ap = (p-p_) .

Ap=-pgu-[gr+gr,+gy+$7-] (2.43)

with ¢, £rom Eq. (1.1) for a = O . Only the axial and tan-

gential comporents of 9r ... are necessary because dy does

not have a radial component.

FProm Eq. (2.43) and the induced velocities, the inner and
outer shroud pressure distributions may ke computed. In detail,
these calculations are quite complex, but the net ioading, or

the inner pressure minus the outer pressure Ap) 18 simply,

Ap) = -puy (2.44)
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This we find from the Kutta-Joukowsk: force on a bound vortex
element or from Bq. (2.43) since the only discontinuous veio-
city component at the element is produced by the element itself
and is in a plane normal to the element. The leading edge
force, if present, may be calculated in the usual manner
Erom the cogfflcient of the singular termr of the Glauert
serxies for A and B, -

Calculation of the axial and tangential components of
the induced velocities at the propeller plane will provide
the inflow quantities corresponding to the given loading.
With these quantities, the blade angle settings and forces
can be computed from the usual propeller blade element theory18
of S. Drzewiecki. Since the inflow is due to all the vortex
elements, the result is analogous to the Prandtl lifting line
approximation for wings of moderate aspect ratio and is con-

sistent with our representation of the blade as a vortex spike.
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CHAPTER THREE

SOLUTIONS FOR DUCT LOADING

Fundamental Solution

The zeroth harmonic of the shroud vorticity distribution
in propeller-fi+ed coordinates is independent of angular posi-
tion on the shroud for a given chordwise position. On the
other hand, if we transform to duct-fixed coordinates, we see
that this harmonic corresponds to the time-independent part of
the shroud vortex distribution. As such, it gives the average
or fundamertal duct loading.

Setting m equal tc zero in Eq. (2.35), then, we obtain,

A
2e(%,) - Bry (6%) = f)L By (%,) KI(8%,) o, (3.1)

where the kernel —Ké .

ax .2
= - w9 (1 axp/2)

_Ké
18 simplified by the reduction of the "bound" terms from

Bq. (2.22) and by the absence of the "shed" terms. In fact,
Egs. (1.22) and (2.8) show that -Ké/ﬁ is the radial velocity
iafluence function of a ring vortex of constant uanit strength
evalvated at the same @ lius R .

Prom Eq. (2.39). the singular part of the keruel is

l/QnAiv . Removing this, we have plotted the regular part of

43
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-27IK6 . which is antisymmetric, in Fig. 3.1 and tabulated the
values in Table 3.1 for ¢ < Aiv < 1 . The regvlar part
represents the three-dimensional effect of the vortex ring.
From Eq. (2.38), it behaves as A;cv in Aiv at the origin,
increases to a maximum, and then decays monotonically. The

computational procedures followed those ceveloped for the

Legendre functionsls, and the results agree with Weissinger's

9

alternate calculation” , or Uo(n) , where 1 corresponds to

ox,, .

The propeller contribution is also simplified for . = C .

Frem Egs. (2.22), (2.29) and (2.32), we £ind

Broo= = [ FUE) o @) £ a (3-2)
TO—2"2J o Iy/) W l\dg) 1,7 dry, :

A priori, we might not anticipate thic non-periodic contribu-
tion, but its identity will be established later.

Since BI‘ o appears in parallel with the camber texm, we
see that it is of cons Jerable significance. Without the pro-
peller term, Eq. (3.l1) is the equation for a ring wing at zero
angle of attack. Consequently, the fundamental solution for
the ducted propeller may be taken from this ring wing solution
by using an effective camber e€_ ,

e

€, = € - Bpy/2 (3.3)
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TABLE 3.1

-Q"KQ,- 1/Axv

¢.0CO00
0.07981
0.1329¢C
0.17629
0.21305
C.2u482
0.27253
0.29683
0.31815
0.33684
0.35322
0.36751
¢.37989
C.39058
0.39966
0.40734
¢.U41370
0.41889
C.u2298
0.4261¢
¢.42833

L6
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In other words:

The mean pressure difference across the shroud of a ducted

propeliler at zero incidence in a uniform flow is identical tc

that of a similar ring wing of different camber.

Thus, experimental measurements on ring wings by

0. Ladurner19

and others, the rheoelectric analogy of

L. Halavardeo, and the theoretical methods of Weissinger9
can be applied to ducted propellers. Two points should be
noted. Pirst, this result is exactly valid only within the
approximations of a linearized theory and of an inviscid
£luid. sSecond, the shroud does not have to be of zero
thickness. Though they do alter the effective camber, thick-
ness effects can be superimpcsed21'22 within the limitations
of thin airfoil theory. 1In fact, with respect to the shroud
thickness, they are identical for a ducted propeller and its

equivalent ring wing.

Effect of Parameters on the Fundamental Load

The modification to the effective camber by the propeller

for the fundamental solution depends on the following parameters

(1) Blade number

(11) Blade circulation strength
(iii) Advance ratio

(iv) Tip clearance

(v) Propeller position

{vi) strength of the vortices shed from the blades
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To the extent, then, that camber effects are known for the
ring wing, the effects of these parameters on € determine
their influence on the steady shroud load.

To study €, We express the blade circulation in a
general form. 1In particular, in most cases for no loading at
the root and finite tip clearance, the circulation distribu-
tion will be zerc at r_ = C , without a hub, and at r_, =

v v
Therefore, we take

(<]
I = FM }: FJ sin 37 I (3.4)
J=1
where FM . for convenience, is the maximum value of I and
fv H fv/u . From Fourier analysis, we have,
1 7 ro
FJ = 2‘]. T~ Sin 7 r, dr, (3.5)
0 M

to determine the coefficients.
With the blade circulation distribution of Eq. (3.4) the
propeller contribution Br'u to the effective camber becomes

Y =

NI™ o
4

2nd

Bro 5 (8%gm) (3.6)
)=l

after interchange of the order of summation and integration.




k9
The characteristic functions Xj are given by

1 A A
X; S f '1\‘;’ 0;5(83) cos jmr, dr,
0

- ox 2+ (1--|,1.1A:v)2

@y = 1+ ——2-—§;§;————- (3.7)
In the form of Eq. (3.6), the dependence of BP'o on the
various parameters can be examined.

The simplest dependence is on the blade number, magni-
tude of the blade loading and the advance ratio. FPor the
first two, the propeller camber contribution varies linearly
in a uniform fashion along the duct. When N or PH is
zero, Br-y is zero as required. On the other hand, it is
inversely proportional to the advance ratio. As J— 0
either by U—=C or Q—® , Br-y becomes infinite, which
corresponds to the collapse of the shed propeller vortices
into a disk of concentric vortices of infinite strength at
the propeller plane. In contrast, when the advance ratio
becomes infinite, the camber modification disappears. We may
interpret this result in the following way. Br-, depends only
on the variation of the blade circulation and not on the blade
circulation itself. That is, the only reason we have an effect
at all for finite advance ratios is the essential "z.xearing”
of the basic periodic character of the blades by their shed
vortices as they rotate out of the radial-axial planes in

which they were shed. Por infinite advance ratio, the shed
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vortices trail back axially. Then there is no smearing and
consequently no effective camber.

The influence of the three remaining parameters, the
blade circulation profile or PJ's ., the propeller position
ip . and the tip clearance variable pu is not so easily
obtained. Analytically, we see from Eq. (3.7) that each
characteristic function is symmetric about the propeller
plane. Since the corresponding integration of xj from
0 to is is antisymmetric, the equivalent shroud shape
"induced" by the jth Fourier component of the blade load-
ing is antisymmetric with an inflection point at Aip =0 .

Differentiation of X, with respect to Axp shows that the

J
slope of this induced camberline or contribution to the effec-
tive camber is a finite maximum or minimum at the propeller
plane; i.e., 383/3A§p = Aip/hgv-* 0 . The result is valid
for the complete range of O {4 1 as verified by the
logarithmic behavior of the Legendre function near its singu-
13 ¢ & 3/2

-00
r as r, o .

larity and its asymptotic behavior v

This agrees with the usual streamline patterns depicted for
a propeller which show larger :radial velocities nearer the
propeller.

To furnish further insight as well as practical working
figures, we have computed the characteristic functions for
j =1,2,3,4,5 at values of un =C.75, 0.96 , ¢.95 and (.99
If the propeller plane is kept within the shroud, the maximum

range of Aip required for any calculation is 2\ . We have
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considered values of C < Aip <1 or a minimum of X = 0.5
for the case of the propeller plane at the shroud entrance
or exit. For a centrally located propeller, the maximum of
A =1 is attained.

The results are given in Figs. 3.2, 3.3, 3.4, and 3.5
along with their tabulated values in Tables 3.2, 3.3, 3.4 and
3.5. As previously noted, the greatest effects occur at the
propeller plane and decay with increasing axial separation.

The decay is faster for the higher harmonics. Analogous
behavior is found for M or radial separation and is illus-
trated in Fig. 3.6, a cross plot of the absolute values of

xj at Aip = ( . The tabulation is accurate to 10'“ or better.

As the tip clearance decreases we know, for a constant
geometry, that the load near the tip does not generally decay
s0 early and that the subsequent shed vortex grows in strength23.
In the ideal flow, however, this vortex disappears when the
tip just touches the shroud and I''= 0 . The effect of the
tip vortex, then, may be examined by assuming a constant blade
circulation throughout the blade and approximating the tip
beh-vior by a step function. Substituting F= Ty l(u-fv)

into Eq. (3.2) and evaluating th2 integral, we get

b3 =2 2
Nr +(1-1)
ut Axp

consequently, the cont:iibution of a tip vortex of strength

PM to the effective shroud camber can be found from the
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CHARACTERISTIC FUNCTIONS xj FOR 1=0.75
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0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
c.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

X
0.25560
0.25317
0.24639
0.23614
0.22356
0.20972
0.19543
0.18126
0.16758
0.15462
0.14248
0.13121
0.12081
0.11126
0.10249
0.09447
0.08714
0.08044
0.07433
0.06874
0.06363

TABLE 3.2
CHARACTERISTIC FUNCTIONS xj

X2
0.08093
0.07963
0.07602
0.07077
0.06464
0.05831
0.05219
0.04654
0.04147
0.03700
0.03308
0.029€8
0.02673
0.02416
0.02192
0.01996
C.01824
0.01673
0.01538
0.01418
0.0131i1

X3
0.03917
0.03837
0.03619
0.03309
0.02962
0.02617
0.02299
0.02018
0.01775
0.01569
0.01395
0.01247
0.01121
0.01013
0.00920
0.00840
0.C0769
0.00707
0.00652
0.00602
0.00558

POR 4 = 0.75

Xy
0.02296
0.02242
0.02098
0.01897
0.01678
0.01467
0.01277
0.01114
0.00976
0.00861
0.00765
0.00684
0.00616
0.00557
0.00507
0.00463
0.00425
0.00391
0.00361
0.00334
0.00310
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X5
0.01503
0.01466
0.01364
0.01224
0.01075
©.00938
0.00810
0.00705
0.00617
0.00544
0.00483
0.00433
0.00390
0.00353
0.00321
0.00294
0.00270
0.00248
0.00229
0.00212
0.00197
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CHARACTERISTIC FURCTIONS Xj POR u=0.90
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CHARACTERISTIC FUNCTIONS xj FOR u = 0.90

e X

0.00 0.39179
.05 0.38341
0.1C 0.36257
0.15  0.33623
0.20  0.30873
0.25  0.28215
c.30 0.25734
0.35 0.23u461
0.40  C€.21396
0.45 0.19529
0.50 0.17845
0.55 0.16328
.60  0.14960
0.65 0.13727
C.70  0.12612
0.75  0.11605
.80  0.10693
0.85 0.C9865
0.90  0.09114
0.95 0.08431
1.CC 0.07809

X2
0.14562
0.13947
0.12492
C.1C797
0.09194
€.07800
0.06632
0.05671
0.04885
0.04243
C.03716
0.03282
0.02921
C.02620
0.02365
0.02149
0.01962
0.01800C
¢.01659
C.01535
C.o1424

=3
0.07773
¢.073Ce
0.06246
0.05100
c.ok107
0.03318
0.02713
0.02254
0.01506
0.01639
0.01431
C.01266
0.01133
0.01024
0.00933
0.00855
0.00788
0.00729
C.0C678
0.00631
€.00589

o.
0.
0.
O.
o.
0.
0.
0.
0.
0.

0

© O O O O O O O o o

Xy

04866
04499
3701
02892
02241
01760
01415
01167
00988
00853

.00751
.02670
.00604
.00550
.00504
00464
.00430
.00399
.00372
.00347
.00325

=2
0.03338
0.03044
0.02426
0.01834
0.01386
C.01073
0.00859
0.00710
0.CCEO4
0.00525
0.C0465
C.00417
0.00378
0.00345
0.00317
0.00293
0.00272
0.00253
0.00236
0.00220
0.00206
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CHARACTERISTIC PUNCTIONS X, FOR u=0.95
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€.35
0.40
C.45
G.5C
0.55
¢.6C
G.65
0.70
C.75
c.80
c.85
.90
0.95
1.00

CHBARACTERISTIC FUNCTIONS XJ FOR p = 0.95

0.
0.
0.
0.
C.
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c.
0.
.22773
.e0725
.18898
17264
.158C1
.14488
-13307
.12241

0
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X

46299
44552
HERVsTe
37306
33766
30543
27652
25071

.11279
L1048
.09618
. 28960
.08247
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O C QO

o o O O O

TABLE 3.4

R

18750
.17310
. 54641
.12091
09956
.08238
.C6874
05795
.04939
.04256
.037¢7
.03262
.02898
.0259¢
.C2344
.02131
.0L945
.01791
01654

.01533
.01426

0.
C.
c.
C.
o.
C.
0.
o.
0.
0.
C.

o O O O O

O O o o O

X

10654
Q9451
07381
05605
ala79
03326
c2647
02161
01809
01548
01351

.01198
.01C76
.00377
.00895
.00825
.00/65
.00712
.0C664
.00622
.CC583

Xy
0.0700C
0.0598¢
C.04347
0.03078
0.02225
0.01669
0.01306
€.01064
0.00898
0.00779
0.00690
¢.00621
0.00565
C.00519
0.00ABO
0.00445
0.00415
0.00388
0.00364
0.0C341
c.C0321
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TABLE 3.5

CHBARACTERISTIC FUNCTIONS XJ

X
G.55041
0.50412
0.44968
C.40135
C.3592C
0.32248
C.29043
€.26236
C.23(68
C.2159C
C¢.19661
C.17545
C.16415
C.15040
C.13818
C.12712
C.11715
C.10813
2.09926
C.C9253
¢.C3578

X2
©.24839
C.20640
C.16277
€.129C6
C.1C346
C.0B4ce
€.06913
C.05769
L. CuBBi
C.Cl185
C.03633
«.C3191
C.c2832
€.02538
€.C2293
€.C2Cc88
€.C1913
C.Cl762
C.ol631
€.C1516
¢.C1413

X3
¢.15401
€.11589
C.0809%4
€.05748
C.04198
€.03166
C.Cau71
€.C1995
€.01062
c.c1423
C.Cl246
¢.cl111
C.C1CC5
€.CC92C
£.00848
¢.co788
€.CC735
C.00688
C.CCobo
C.CCHCT

€. CH72

FOR p = 0.99

ESL
€.1¢893
0.07423
C.c4614
0.02973
€.02025
©.Cl468
0.01132
¢.cco21
0.0C% 33
C.0C689
C.0C619
€.0C565
c.cc521
C.CCuBY
C.C0452
c.och23
C.0C398
C.0C374
C.CC353
¢.CC333
€.CC31y
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X5
0.08285
¢.05118
€.02850
¢.01693
¢.011C5
¢.0C796
0.00625
£.C0523
C.00457
c.00k412
€.C0376
0.0C348
c.cC324
€.CC3C3
0.C0284
C.CC267
C.0C251
€.0C237
0.00224
L.CC211
¢.CC20C
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tabulated values of tae Legendre functionlu'ls.

over a
range of values of p and Aip . the results may be esti-
mated from Fig. 2.1. For zero tip clearance, they possess

a logarithmic singularity near the propeller plane. Since
Egs. (1.6), (1.18) and (2.8) show that the radial velocity
at Xy . R induced by a ring vortex of radius x, is
-uAivqé(ﬁg)/hwﬁfvg%, a perfect differential in iv ,

Eq. (3.8) is equivalent to the effect of a semi-infinite
cylindrical distribution of vortex rings of radius Rp :
extending from xp to +» . The corresponding constant
strergth per unit length in the axial direction is Unqqu/wd .
or alternatively, a uniform slipstream velocity increment of

the same amount. 1In this way, the previous resultl7

using
the method of singularities, i.e., determing the effect of
the propeller by a pressure jump and uniform slipstream, can
be related to the present analysis by setting u =1 and

X5 = A in Eq. (3.8).

Limiting Case of Infinite Advance Ratio

As the forward velocity U becomes very large compared
to the rotational velocity QRP at the propelier tip, we have
shown that the swirl terms disappear from the kernel. This
dccoupled cur governing equations, Egqs. (2.35) and (2.36),
for the chordwise shroud vortex distributions and reduced the
kernel x& to Weissinger's result. In terms of Legendre func~
tions, the reduced kernel is given by the sum of Egs. (2.9)
and (2.37).
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Now, if we let the advance ratio become infinite in the
"shed" propeller teim cFé and follow the derivation of

Eq. (2.37), we £ind that this term is purely imaginary, or

2im Cpn- =

J e

<A

u ‘ A -
- 87\:2 f %:- ‘[o Tn;N at dr (3.9)

The argument of T@N is equal to au with JuT replaced by
its equivalent T . From their definitions, then, Bpo is
identicaily zero in this case and Aps is given as minus
twice the imaginary part of Eq. (3.9). The single "boungd"
propeller term remains unchanged.

With these results, Egs. (2.35) and (2.36) are further
simplified for an infinite advance ratio. The subsequent
shroud vortex distrabutions for any harmonic can be found
from Weissinger's solutions 9 for a ring wing at zero angle
of attack in a uniform strcam. In particular, for Bm we
see that 81,82, ... 4are dll zCro since the real shiuua
caml ~r appears only in the zeroth harmonic. The remaining

B. with Br: - C is the distribution for the act.al duct,

(o
which is assumed axisymmetric, without the propeller present.
This, of course, is the same as noted for BC for finite J
since there are no shed vortices for axisymmetric loading.

On ths other hand, for Am , AC = 0 and Al'Ae' e




correspond to the vortex distributions of an equivalent
asymmetric duct under identical flow conditions. The equiva-

lent axially asymmetric camber, say €300 has just a sine

harmonic dependence, or,

L
—

=)
GJm i em
m=1

(Aip) sin mN6 (3.10)

where the axial camber coefficients

€ m sdéimm - 2;(crm+cm) (3.11)

fcllow directly from Egs. (2.30) and (3.9). That is:

At high advance ratic, the resultant shroud loading on

a ducted propeller at zero angle of attack in a uniform

inviscid flow is5 equal to :he load on the isolated shroud

plus the locading on an equivalent asymmetric ring wing.

The inner integration on T;nu(ah) over T in Eq. (3.9)

is given by Eq. (2.41) for Ev = 1 and by the infinite series,

] ) A)-( 2j+1

j 'rr’md%=z

r (3%1)
t(of VI
0 Lo o5

N

+

-!i ) _ _
ﬂtv ‘ (me—f mN)if 1_5) _ 260

(3.12)
TN ((.552_1)15 2,mN ]
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e4

for 0 < Ev < 1 . The argument of the (j+1)th derivative

is EB = {1+(l-fv)2/25v} or 63 of Eq. (2.18) with A§p =0,
i.e., the propeller plane, and f = {Eg-(&ge—l)k] . To derive
Eq. (3.12), T;N is re-expressed in the integral form of the
Legendre function of Eq. (2.8) and the order of integration

is interchanged. The integration on T , which represents the
influence of a straight semi-infinite vortex, can then be
performed. Expanding part of the subsequent integrand over

8 in reciprocal square-root powers of [(l—iv)2+hfv sin®rg) ,
the integral of each term is identified from Eq. (2.8) as a
derivative of a Legendre function of second kind and half
order. The other part is evaluated by suitable contour inte-

gration.

Infinite Blade Number

In many instances. the propeller blade number may beccme
guite large. PFor this case, an actuator disk solution is
desired which is the proper limit of our equations, retaining
the radial propeller load variation.

The propeller disk loading is proportional to the product
of the blade number and the strencth of the blade circulation.
To obtain an actuator disk solution, we let the blade number
approach infinity but decrease the strength of the circulation

such that the product remains finite, or

r, = ¢1m NPl (3.13)
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If we examine the propeller modification of the shroud camber
by the zeroth hatvmonic, see Eq. (3.6), we find that for these
parameters its only dependence 1s linear with their product.
In the limit, then, this camber modification persists unchanged
and equal to the finite blade result.

on the other hand, the frequency of the first harmonic
and other time dependent texrms of the shroud loading becomes
infinite. By definition of any actuator disk model, however,
the flow field must be time independent in coordinates trans-
lating with the propeller. Since these higher harmonics are
purely sinusoidal, their amplitude fcr infinite kblade number
and finite disk loading must approach zero. Physically, this
establishes that:

The average pressure distribution on the sinroud of a

ducted propeller with a finite blade number corresponds to

the total loading on a similar model with an infinite blade
number but thc same disk loading.

For an analytic proof, we have to note that the parameters
m,N, and FM occur in the propeller terms, see Eqs. (2.29)
(2.3C) and (2.31), only as the product mMN and N[y, . The
xernels, of course, contain just ~W as a parameter. Mathe-
matically, then, we have to expand Qn-% for large order near
its singularity to show that all the propeller terms except
Bré vanish and that the integral equations decouple,

The zeroth harmonic of the propeller terms for the actua-

tor dask limit has a broader significance. The term Brd
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gives the radial velocity component of a generalized actuatic:

disk. The computation of the axial and tangentiul velocity
components is analogous to that of BPé . This model is not
limited to a uniform disk loading, nor to zero angle of attack
if the slipstream deflection is known. In other words:

The steady part of the flow field of any propeller with

finite blade number corresponds to the dgeneralized actuator
disk solution with the same disk loading.

3.5 General Soliution for Higher Harmonics
We have shown that the higher harmonics, m =.1,2,3 ... .

correspond to the time-dependent texms of the shroud loading.
The governing equations have, in general, two esserntial fea-
tures which make a numerical solution more complex than the
ring wing probleam. One is the coupling, and the other, the
occurrence of a logarithmic as well as a Cauchy singularity.
These difficulties can be trcated by modification of Weissinger's
technique, but further reduction is more desirable.

Pirst, it is possible to remove the coupling because of
the "derivative" relationship between the kernels. For mp2 1 ,

we let

-4
i1}

A
A f Am(;v) Km(&v) div

)y _ _
i, = f B (x,) K (&x ) dx (3.14)




and note
Ko(8%,) 3+ K (a%,) (3.15)
With Egs. (3.14) and (3.15), Egs. (2.35) and (2.36) become a

system of lincar differential equations. Or, without the

shroud camber,

OIn - IB = = Bpp
OIy « I, = Ap, *+ App (3.16)

where differentiation across the integrals IA and IB is
Justified in view of the weall square-root and leogarithmic

singularities of the integrands. UMultiplying the firzt of
tge, {2 1) we A = m/Ju and adding it to the derivative of

the second, we isclate I, -° reversing the procedure and

subtracting, IB . Both are of tle form

17+ 06 1- P(is) (3.17)
which is the second-order, linear differential equation for
a simple harronic oscillator subject to a forcing function.
That 1s, we view the irtegrals IA and IB of ouxr unitown

vortex wistraibutions as "particle displacement" and the axial

coordinate .. as "time". The "wotion” is undarpea with a
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"natural frequency" ¢ . The "forcing functions" for I

A
and IB are,
Py (Appraps) - 0 By
PB = (Bp“'\) - O(Arm'*'Apn'.‘) (3.18)

respectively.

From these differential equations, I and IB are

A
determined, providing in turn, decoupled equations for Am

and B . To find the inhomogeneous solution I, ofi Eq. (3.17).

we take the "indicial response® I, of the system to the unit

step function P = l(is) .

1, (Lc?)(i-cos ok ) 1(k,) (3.19)

4
and use Duhame1'52 linear superposition method. After inte-

gration by parts, we have

g
J[ P{x) sin o{x -x) dx (3.2¢)
-\

Ii =

Q-

where P e now is well-behaved throughcut the interval from
-2 to A for C<u<l

Eq. {3.22)., together with Egs. (3.14) and (2.18), yield
a simpler system of decoupled equaticns for the time-dependent

shroud vortex distributions wvhich correspond to the first and
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higher harmonics of the radial flow induced by the propeiler.

The form of these equations is similar to the general ring
wing problem, but the kernel _s completely different. However,
if we differentiate with respect to EB . carry the differen-

tiation bac: inside I, and I, , and usc Eq. (J.15), we find

A B
for the inhomogeneous solution,
g o
[ P_(x) cos o Ax dx
W \
-d
X - -
L/. An(x‘) xm(Ax ) s (3.21)
-\
and,
X i o
J[ PB(x) cos 0 Ax dx
-2
/.\
J Bm(xv) Km(Axv) dx,, (3.22)

-

where the "bound" term ci Ké , or —SAN/&ﬂ , is the same as
for the ring wing. Numecrical solutions, then, can follow
essentially along the lines of WQissinger‘sg—

The Gecoupling technigue which we have employed raises

an important question. In addition to the inhomogeneous

i
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solution of the differential equation of Eq. (3.17), there
is the homogeneous solution Ih '

Ih(:'is) . I’h: cos 0 Ax| +

(1/0) 1,: sinoAx!

W
.
0]

w

~—

where Ih‘ denotes the value of Ih(is) at any reference
point between the leading and trailing edges with the leading
vdge excluded; and Ax' , the distance from th. reference
point to is . These solutions introduce a total of four

unknown constants for the corresponding IA and IB . Two
of these, though, result from the differentiation required
for decoupling. They may be removed by resubstitution into

either of Egs. (3.16) . :..ch shows that the relations,

OIpa ~Inpt €

oLy * Ipa' © C (3.24)

must be fulfilled in order for the coupled, homogeneous equa-
tions tc be satisfied. We are thus left with two undetermined
constants as we should expect.

That is, consider an aisymmetric ring wing at zero inci-
dence in a unifoxrn, translating and rotating flow, with the

axis ot rotation coincident with the wing axis. The equations
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seen to indicate, then, that it is possible in an inviscid
fluid tc have self-sustaining iload distributions of periodic
nature. Or, the radial velocity induced by the helical
vortices shed from the shroud for certain shroud vortex dis-
tributions balances the velocity induced by the bound shroud
vortices. This is independent of the camber within the
present assumptions, but dependent on the swirl, vanishing
as the shroud "advance ratio"” becomes infinite and decouples
the governing equations. The possible existence of these
seif-sustaining eolutions appeazs to be similar in nature to
the .eceat investigation of H. Ludwieglo. where he has ax-
amined the “«t2bility cgains+ the formation of helical

vortices" in an annular flow beztween two coaxial cylinders.

Example
To illuastrate the practical application of the theory

we have computed the average shioud load distribution for
a particular ducted propeller.
The values used for the parameters and the propeller

loading assumed are,

J=1
N=2
xp = 0

€ = -0.38 x
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[ = (2/3V3){2 sin 7 - sin 2m 1)
A =20.5
u=20.95

—~
W)
N
(6 4]

~—

where ' is shown in Fig. 3.7.

with I, =4/37/3, r,=-2/3/3 and ry=1, we
have computed and plotted in Fig. 3.8 the propeller contribu-
tion, -Bp-./2 , to the effective camber by means of Eq. (3.6)
and Takle 3.4. The maximum camber distortion which occurs at
the mid chord or propeller plane is about 4% of the given
shroud camber at the trailing edge. The assumed [ corres-
ponds to a disk loading, neglecting inflow, of 41.1 psf at
U = 2C0 mph and STP.

From Eq. (2.44), the net average pressure distribution

4P ] becomes by means of Egs. (2.1) and (2.2),

Ep] = -By(X) (3.26)

where Ep] = ap)/(pu°/2) . For the determination of Bo(i)
for our example, we have employed an iteration technique25
instead of Weissinger's procedure for the solution of

Ey. (3.1). Tne final result is shown in Fig. 3.9. It re-
quired eleven non-zero terms, including the singular term,

of the Glauert series and two iterations to obtain accuracy

to three decimal places.
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Without the propeller, the net lcading is symmetric about
the center of the shroud and vanishes at the leading and
trailing edges because the camber ia antisymmetric. The
contributicn of the propeller, however, is always symmetric
and ‘su in this case introduces flow around the leading edge
and a leading edge singularity. This, in turn, gives rise
to a leading edge suction force which can he found from th-
value of 0.187 for the coefficient of the singular term of

BC .
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CONCLUSIONS

A three-dimensional theory has been developed for the
dacted propeller with finite blade number in uniform motion
ts:zough an inviscid, incompressible fluid at zero incidence.
Within the approximations of a lightly-loaded propeller and
of thin airfoil theory, the followirg generalizations were
obtained:

The effect »f shroud cambex appears onliy in the

steady shroud load.

The steady preasure difference across the shroud

is identical to that of a similar ring wing of

different camber.

At high advance ratio, the resultant shroud loading

is equal to the load on the isolated shroud plus

the loading on an equivalent asymmetric ring wing.

The steady pressure distribution on the shroud

corresponds to the total loading on a sim.lar

configuration with infinite blade numbex but the

same radial disk loading.

The steady part of the flow field of any propeller

with finite blade number corresponds to a general-

ize" actuator disk solution with the same radial

die- loading.

The theory is readily applicable to practical calculations,
particv:arly the determination of the zeroth harmonic which
gives - e average shroud loadina. By variation of paxameters,
the optimwn configurations of Dickmann and Weissinger7 and
R. B. %sray and W. Castles, Jr.26 may be further investigated.

Jaese results clearly justify similar analytic studies

of t%. more complex ducted propeller problems.
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